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    INTRODUCTION 

 Orthopoxviruses are classified within the family  Poxviridae  
and the subfamily  Chordopoxvirinae,  which contains the genus 
 Orthopoxvirus . All members in the family  Poxviridae  have 
lipid envelopes and double-stranded DNA genomes. The most 
recognized member of this genus is variola virus (the causative 
agent of smallpox), which has notoriously been associated with 
large-scale human morbidity and mortality. 1  Since the eradica-
tion of smallpox nearly three decades ago, most orthopoxvi-
ruses circulating today are zoonotic. 2  Specifically, monkeypox 
virus (MPXV) is a zoonotic virus and has been reported to 
produce disease in humans after direct contact with infected 
blood, saliva, and raw meat. 2–5  This virus was first isolated in 
1958 from pock lesions that developed on laboratory mon-
keys, which were being quarantined before experimentation. 6  
Currently, MPXV is most prevalent in western and central 
Africa, with the more virulent MPXV strains found in the 
Congo River basin and the less virulent MPXV strains found 
in western Africa. 2,7–10  In 2003, there was a MPXV outbreak in 
the United States in persons who came in contact with infected 
prairie dogs, which were housed with rodents imported from 
Africa. 7  There were no deaths, but this was the first outbreak 
reported for MPXV infection in humans outside Africa. 7,8,11  

 Understandably, the development of safer orthopoxvirus 
vaccines and antiviral drug therapies has been severely inhib-
ited by the elimination of smallpox in the wild and the fact 
that working with variola virus is limited to two World Health 
Organization laboratories: the Centers for Disease Control 
and Prevention in the United States and the State Research 
Center of Virology and Biotechnology VECTOR in Koltsovo, 
Russia. Therefore, MPXV is often used as a surrogate for vari-
ola virus during vaccine and antiviral drug studies when non-
human primates and other animal species, such as rodents, are 
used as the animal model because variola virus cannot infect 

them. Therefore, MPXV has been widely used as a challenge 
agent in nonhuman primate animal models during the devel-
opment of new orthopox vaccines, such as the highly atten-
uated modified vaccinia virus (VACV) Ankara vaccine, and 
antiviral drugs, such as ST-246. 12–14  Another viral therapeu-
tic that is currently in clinical trials is CMX001 (HDP-CDV). 
CMX001 (HDP-CDV) is an ether-lipid analog of cidofovir 
(CDV) with equivalent efficacy to CDV and less side effects, 
such as nephrotoxicity. 15  

 The threat of zoonotic orthopoxviruses being exploited as 
a bioweapon is a serious public health concern. Furthermore, 
the elimination of smallpox vaccination programs for the 
general public has established new generations of suscepti-
ble hosts, increasing the potential pathogenicity of zoonotic 
orthopoxviruses. 

 An integrated broad-range polymerase chain reaction cou-
pled with electrospray ionization mass spectrometry (PCR/
ESI-MS) system (Ibis T5000; Ibis Biosciences, Carlsbad, CA) 
has been designed to rapidly detect and accurately iden-
tify emerging pathogens and biothreat agents without prior 
knowledge of the nucleic acid sequence of the pathogen. 16–18  
Previously, the PCR/ESI-MS technology has been applied for 
detecting influenza virus, alphaviruses, coronaviruses, and bac-
terial species such as  Haemophilus influenzae ,  Neisseria men-
ingitides , and  Streptococcus pyogenes . 17,19–21  

 Recently, a PCR/ESI-MS pan- Orthopoxvirus  assay was 
developed to target all members of the genus  Orthopoxvirus  
by using the T5000 platform. 22  Some of the first genus-specific 
assays required conventional PCR followed by restriction 
endonuclease digestion and subsequent gel electrophore-
sis. 23,24  More recently, quantitative real-time PCR assays have 
been described to determine viral loads in clinical samples, 
but lack broad-range orthopoxvirus detection capabilities 
in a single assay. 7,25  For these assays, differentiation of the 
various  Orthopoxvirus  species requires the use of different 
TaqMan probes in separate reactions or melt-curve analysis 
of hybridization probes. The recently developed PCR/ESI-MS 
pan- Orthopoxvirus  assay was successful in identifying all 
known orthopoxviruses tested, but its ability to detect viruses 
from human clinical samples or experimentally infected ani-
mals was not studied. In this study, the performance of the 
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    Abstract.   Monkeypox virus (MPXV), a member of the family  Poxviridae  and genus  Orthopoxvirus , causes a small-
pox-like disease in humans. A previously described pan- Orthopoxvirus  assay, based on a broad-range polymerase chain 
reaction (PCR) coupled with electrospray ionization mass spectrometry (PCR/ESI-MS), was evaluated for its ability to 
detect MPXV from spiked human and aerosol-infected cynomolgous macaque ( Macaca fascicularis ) samples. Detection 
of MPXV DNA from macaque tissue, blood, and spiked human blood by the PCR/ESI-MS pan- Orthopoxvirus  assay was 
comparable, albeit at slightly higher levels, to the current gold standard method of real-time PCR with the pan- Orthopox-
virus  assay and had a limit of detection of 200 plaque-forming units. Furthermore, the platform was able to distinguish 
MPXV and vaccinia viruses that were spiked into macaque blood samples at various concentrations. This platform pro-
vides a new tool for the diagnosis and monitoring of orthopoxviral loads during vaccine or antiviral studies, but also could 
provide rapid identification during natural outbreaks or bioterrorism attacks.   
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pan- Orthopoxvirus  assay was evaluated to validate its abil-
ity to identify MPXV viral loads from human and nonhuman 
primate clinical samples. 

   MATERIALS AND METHODS 

  Viral isolates and DNA extraction.   The MPXV (strain 
Zaire 79) used for the aerosol infections of nonhuman pri-
mates was acquired from Biodefense and Emerging Infections 
Research Resources Repository/The American Type Culture 
Collection (Manassas, VA). Characterized MPXV DNA sam-
ples collected from virus cultures and macaque blood and 
tissues were extracted using the QIAamp DNA mini assay 
manual protocol (Qiagen, Valencia, CA). Also, DNA was 
isolated from whole blood and selected tissues by using the 
BioRobot M48 (Qiagen) in accordance with the manufactur-
er’s instructions. 

   MPXV-spiked human samples.   Two hundred fifty microli-
ters of MPXV, ranging in concentrations from 20 to 2 × 10 7  
plaque-forming units (PFU), were spiked into 750 µL of cul-
ture medium, human sera, blood, and urine samples that were 
obtained from Bioreclamation, Inc. (Liverpool, NY). Samples 
were divided in half and extracted by using two methods: the 
QIAamp DNA mini assay and the BioRobot M48 (Qiagen). 
To determine the limit of detection (LOD), MPXV was seri-
ally diluted 10-fold and then spiked into the matrix for each 
sample type and tested in triplicate on the PCR/ESI-MS sys-
tem using the pan- Orthopoxvirus  assay. 

   Internal positive DNA control.   To determine the efficiency 
of the PCR, each reaction contained a synthetic internal pos-
itive DNA control previously described. 22  This control was 
present at a predetermined concentration (100 copies/PCR) 
and acted as a calibrant to determine the efficiency of the PCR 
and provide quantitative information. 22  

   Broad-range orthopoxvirus PCR.   A Janus robot (Perkin-
Elmer, Waltham, MA) was used to set up each PCR. All PCRs 
were performed in volumes of 50 µL using 96-well micro-
titer plates and a Mastercycler ®  thermocycler (Eppendorf, 
Hamburg, Germany). The PCR buffer consisted of 2.5 units of 
FastStart Taq (Roche, Indianapolis, IN), 1× buffer II, 2.0 mM 
MgCl 2 , 0.4 M betaine, 800 µM dNTP mixture, and 250 nM pro-
pyne containing PCR primers. 22  The following PCR conditions 
were used to amplify sequences: 95°C for 10 minutes, followed 
by 8 cycles at 95°C for 30 seconds, 48°C for 30 seconds, and 
72°C for 30 seconds, followed by 37 cycles at 95°C for 15 sec-
onds, 56°C for 20 seconds, and 72°C for 20 seconds. 

   MPXV-infected cynomolgus macaques.   Cynomolgus 
macaques ( Macaca fascicularis ) were exposed to 4 × 10 5  PFU/
animal of aerosolized MPXV under an approved U.S. Army 
Medical Research Institute of Infectious Diseases animal use 
protocol. Starting with day zero, samples were collected every 
other day after challenge. 22  

 Research was conducted in compliance with the Animal 
Welfare Act and other federal statutes and regulations related 
to animals and experiments involving animals and adheres 
to principles stated in the Guide for the Care and Use of 
Laboratory Animals, National Research Council, 1996. The 
facility where this research was conducted is fully accred-
ited by the Association for Assessment and Accreditation of 
Laboratory Animal Care International. 

   MPXV- and VACV-spiked macaque blood.   Two orthopox-
viruses (MPXV-Zaire 79 strain and VACV-WR strain) were 

cultured in Vero cells (African green monkey kidney cells) 
and their titers were determined by plaque assay using the 
same cell lines. MPXV and VACV were diluted in separate 
tubes so each virus had a final concentration of 1 × 10 8  PFU/
mL. Approximately 100 µL of diluted MPXV and VACV were 
spiked into 1 mL of uninfected macaque blood to give a final 
concentration of 1 × 10 7  PFU/mL for each virus in sample one. 
In samples two and three, VACV and MPXV were spiked in 
various volumes so VACV (approximately 10 µL) had a final 
concentration of 1 × 10 6  PFU/mL and MPXV (approximately 
100 µL) had a final concentration of 1 × 10 7  PFU/mL in sample 
two. Macaque blood sample three contained 1 × 10 6  PFU/mL 
of MPXV and 1 × 10 7  PFU/mL of VACV. DNA was extracted 
as described above using the QIAamp DNA mini assay manual 
protocol (Qiagen) and evaluated using the pan-  Orthopoxvirus  
PCR/ESI-MS assay. 

   Mass spectrometry and signal processing.   After PCR, 
approximately 30 µL of each PCR was bound to a weak anion 
exchange matrix where a series of wash steps removed salts 
and excess reaction reagents. After clean up, the purified PCR 
products were eluted from the stationary phase using a vol-
atile buffer. A Daltonics microToF (Bruker, Billerica, MA) 
mass spectrometer was used for analyzing purified DNA. 16  
Products from each reaction well were individually sprayed 
into the mass spectrometer by using an autosampler (LEAP 
Technologies, Carrboro, NC). Internal mass standards and 
plasmid calibrants were used to reach a mass accuracy of 
approximately 5–10 ppm and provided accurate measure-
ments with high-resolution mass spectra for each sample by 
previously described protocols. 16  Proprietary signal-process-
ing software was used to deconvolute raw data from mass per 
charge (m/z). This molecular mass was then assigned to the 
empirical molecular mass and correlating base composition of 
the amplicon, which was matched with those in the database 
of the system. Using a number of statistical considerations 
and multi-primer results, we identified the organisms. 26  For 
every PCR well, the signal amplitude of the calibrant and the 
sample were compared and interpreted to give quantitative 
results. 16  

   Real-time PCR.   Real-time PCR was carried out with the 
Light Cycler (Roche) using a pan- Orthopoxvirus  hemaggluti-
nin (HA) assay as previously described. 25  Briefly, the oligonu-
cleotide primers and minor groove binder protein–containing 
TaqMan probe were selected from conserved regions of the 
HA gene. 7  Cloned target DNA (HA gene) was prepared as a 
10-fold serial dilution from 5 × 10 6  to five gene copies in 5 µL. 

 All reactions were run in duplicate. The LightCycler analy-
sis software version 4.0 was used to generate linear regression 
curves and accompanying attributes (slope, intercept, error, 
and r value) for each assay and these curves were used as stan-
dard curve for measuring the sample in each run. 

   Statistical analyses.   To determine if there were any statis-
tically significant differences between the manual and auto-
mated methods for any specimen types in  Tables 1             and  2              , we 
preformed a standard  t -test. To determine if there were any 
statistically significant differences between real-time PCR 
and PCR/ESI-MS for any of the specimen types in  Table 3            , 
we preformed an analysis of variance overtime between the 
two methods; pairwise comparisons were performed at each 
time point. A  t -test was performed to determine if there were 
any statistically significant differences between the data for 
the various tissues types between the two detection methods 
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( Figure 1  ). For all statistical analyses, a  P  < 0.05 was consid-
ered statistically significant. 

    RESULTS 

  Quantification of MPXV from spiked human clinical sam-
ples.    Table 1  depicts the DNA concentration (log 10  genomes/
mL) for the human clinical samples spiked with 2 × 10 6  PFU of 
MPXV and tested using the pan- Orthopoxvirus  PCR/ESI-MS 
assay. Statistically, no differences were observed between the 
manual and automated methods for any of the specimen types 
tested. 

   Determination of the LOD of MPXV in spiked human 
clinical samples.   The DNA concentrations (log 10  genomes/mL) 
for the human sera and medium samples spiked with MPXV 
ranging from 20 to 2 × 10 4  PFU are shown in  Table 2 . The DNA 
for each sample was either extracted using the QIAamp DNA 
mini assay or the BioRobot M48, serially diluted, and tested 
using PCR/ESI-MS. The LOD for all the samples tested was 
200 PFU because all samples tested at 20 PFU were negative, 
based on the calculated DNA concentrations using Ibis soft-
ware. Statistically, a standard  t -test showed that there were 
only significant differences between the manual and auto-
mated methods for the serum specimen spiked at 200 and 
20,000 PFU/mL. There were no statistically significant differ-
ences observed for the other samples. 

   Real-time PCR versus PCR/ESI-MS quantitative results 
for blood samples collected from MPXV-infected macaques.  
 The results for the pan- Orthopoxvirus  real-time PCR and 
PCR/ESI-MS for the blood samples collected from the three 
macaques infected with MPXV are shown in  Table 3 . Blood 
samples of from macaque 1 obtained at day 9 post-inocula-
tion had the highest amount of MPXV DNA detected from 
all three macaques by real-time PCR and PCR/ESI-MS detec-
tion systems. To determine if there were statistically signifi-
cant differences among the data, an analysis of variance was 

performed with day as the repeated measure. No significant 
difference in log 10 -transformed genomes/mL between meth-
ods types ( P  = 0.124) and between day and method type 
( P  = 0.657) were observed ( Table 3 ). 

   Real-time PCR versus PCR/ESI-MS quantitative results for 
MPXV-infected macaque tissues.   The results for the extracted 
MPXV DNA collected from the two experimentally infected 
macaques from a variety of tissues and tested using real-time 
PCR and PCR/ESI-MS are shown in  Figure 1 . Statistically, for 
both animals, the PCR/ESI-MS quantitative results were com-
parable to those of the real-time PCR assay. Also, there were 
no tissue inhibitory effects observed for the real-time PCR or 
the PCR/ESI-MS assay from cellular macaque DNA, and the 
highest concentrations of MPXV DNA was detected from the 
lung tissue, as would be expected from an aerosol infection. 

   Quantification of MPXV and VACV from spiked macaque 
blood.   The concentrations of the two viral DNAs detected 
from the spiked macaque blood samples are shown in  Table 4              . 
MPXV was detected at a slightly higher concentration in 
sample one when equal concentrations of MPXV and VACV 
were spiked, but both viruses had clear identification signals 
in terms of spectra data ( Figure 2  ). In sample two, MPXV 
was spiked at the highest concentration and was detected at 
3.6 log 10  genome equivalents/mL compared with VACV, which 
was detected at 3.0 log 10  genome equivalents/mL. In sample 3, 
VACV was spiked at a higher concentration and was detected 
at 3.8 log 10  genome equivalent/mL; MPXV was detected at 
3.3 log 10  genome equivalent/mL. 

    DISCUSSION 

 MPXV poses a significant threat as a zoonotic pathogen 
and potential bioterrorism agent. Currently, real-time PCR 
is the most widely accepted diagnostic system for detect-
ing orthopoxviruses. A real-time PCR assay has been pre-
viously described to detect MPXV by DNA polymerase 
(E9L-NVAR) and extracellular enveloped protein (B6R) 
genes as primer targets. 11  The E9L-NVAR assay detected only 
Eurasian orthopoxviruses and not variola, and the B6R assay 
detected only MPXV isolates. 11  Also, two other real-time PCR 
assays have also been described for detecting different spe-
cies of orthopoxviruses. 7,25  One of the orthopoxvirus assays 
consists of primers that target the HA gene and the other 
assay uses primers specific for the vaccinia virus F3L and NR3 
genes. 7,25  Consequently, only the previously described pan-
 Orthopoxvirus  real-time PCR assay, which are specific for the 

 T able  1 
 Polymerase chain reaction coupled with electrospray ionization mass 

spectrometry quantitation of human clinical specimens spiked with 
2 × 10 6  plaque-forming units of monkeypoxvirus and comparison 
between manual and automated DNA extraction methods* 
Specimen QIAamp (manual) BioRobot (automated)

Media 8.4 (0.3) 8.1 (0.1)
Serum 8.3 (0.1) 8.0 (0.1)
Urine 8.3 (0.1) 7.7 (0.2)
Whole blood 8.7 (0.3) 8.6 (0.2)

  *   Values are mean log 10  genome equivalents per milliliter (standard error).  

 T able  2 
 Limit of detection of polymerase chain reaction coupled with elec-

trospray ionization mass spectrometry for media and human sera 
clinical samples spiked with different concentrations of monkeypox 
virus and extracted using manual and robotic methods* 

PFU/mL

QIAamp (manual) BioRobot (automated)

Media Serum Media Serum

20 0 0 0 0
200 4.3 (0.3) 4.8 (0.1) 4.2 (0.1) 4.0 (0.0)
2,000 5.5 (0.1) 5.6 (0.1) 5.3 (0.2) 5.0 (0.2)
20,000 6.5 (0.2) 6.6 (0.1) 6.3 (0.3) 6.1 (0.0)

  *   Values are mean log 10  genome equivalents per milliliter (standard error). PFU = plaque-
forming units.  

 T able  3 
 Monkeypox virus DNA extracted from blood samples from experi-

mentally infected macaques quantitated on two pan- Orthopoxvirus  
diagnostic platforms* 

Blood samples Real-time PCR PCR/ESI-MS

Macaque 1, day 4 4.1 4.6
Macaque 1, day 6 5.9 8.0
Macaque 1, day 9† 6.1 8.0
Macaque 2, day 4 5.0 4.5
Macaque 2, day 6 5.2 5.2
Macaque 2, day 8 6.0 8.2
Macaque 3, day 4 3.4 4.2
Macaque 3, day 6 4.5 4.9
Macaque 3, day 8 5.1 5.3

  *   Values are mean log 10  genome equivalents per milliliter. PCR/ESI-MS = polymerase chain 
reaction coupled with electrospray ionization mass spectrometry.  

  †   This macaque was moribund and was killed on day 9.  
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HA gene, can detect all orthopoxviral species in a single assay 
by melt curve analysis. 25  However, because the HA assay can-
not identify the exact species of orthopoxvirus being ampli-
fied, all amplicons for the currently described  Orthopoxvirus  
real-time PCR assays need to be sequenced to determine their 
exact identity. 7,25  

 In contrast, the pan- Orthopoxvirus  PCR/ESI-MS assay can 
identify all members of the  Orthopoxvirus  genus in a single 
assay and can quantitatively identify MPXV DNA in clinical 
specimens without the need for sequencing. Spiked human 
samples containing 2 × 10 6  PFU of MPXV had comparable 
MPXV DNA viral loads detected between the automated 
and manual DNA extraction methods ( Table 1 ). Specifically, 
when comparing the viral loads detected in each of the four 

biological backgrounds, all samples had comparable viral loads 
detected, except for the urine sample extracted by the auto-
mated method. This particular sample did not have a viral load 
detected at > 8.0 log 10  genome equivalents/mL; this anomaly 
cannot be currently explained. For the LOD, the manual and 
automated methods were again comparable and the LOD was 
determined to be 200 PFU in medium and human sera spiked 

 F igure  1.    Comparison of real-time polymerase chain reaction (PCR) and PCR coupled with electrospray ionization mass spectrometry (PCR/
ESI-MS) pan- Orthopoxvirus  assays for detecting monkeypox virus (MPXV) in tissues from aerosolized MPXV-infected macaques (n = 2). Standard 
error bars are shown for each set of data.    

 F igure  2.    Mass spectra data from the pan- Orthopoxvirus  poly-
merase chain reaction coupled with electrospray ionization mass spec-
trometry (PCR/ESI-MS) assay representing a single-strand amplicon 
of the DNA polymerase gene for both monkeypox virus and vaccinia 
virus from a mixed blood sample. This figure appears in color at www
.ajtmh.org.    

 T able  4 
 MPXV and VACV DNAs extracted from spiked macaque blood 

containing the same concentration (sample 1) or different con-
centrations of each virus (sample 2 and 3) and quantitated on the pan-
 Orthopoxvirus  platform* 

Macaque blood 
sample 1 × 10 6  PFU/mL PCR/ESI-MS 1 × 10 7  PFU/mL PCR/ESI-MS

1 NA NA MPXV, VACV 3.5, 3.4
2 VACV 3.0 MPXV 3.6
3 MPXV 3.3 VACV 3.8

  *  Values are mean log 10  genome equivalents per milliliter. MPXV = monkeypox virus; 
VACV = vaccinia virus; PFU = plaque-forming units; PCR/ESI-MS = polymerase chain reac-
tion coupled with electrospray ionization mass spectrometry; NA = not available.  
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with MPXV ( Table 2 ). Viral load detection directly corre-
sponded in a logarithmic fashion to the amount of MPXV used 
to originally spike the sample. Additionally, MPXV viral loads 
could be detected from blood and tissue specimens that were 
collected from experimentally infected cynomolgus macaques 
and were comparable to data using a pan- Orthopoxvirus  real-
time assay ( Table 3  and  Figure 1 ). For all samples, we observed 
no inhibition with the pan- Orthopoxvirus  PCR/ESI-MS plat-
form and there was no inhibitory amplification from residual 
cellular DNA or tissue inhibition. The pan- Orthopoxvirus  
PCR/ESI-MS had slightly higher MPXV viral loads detected 
for most tissue samples compared with the pan- Orthopoxvirus  
real-time PCR assay (Table 3). Specifically, the MPXV DNA 
extracted from the lung tissues had the highest concentra-
tions of MPXV detected compared with the rest of the tissue 
extracted DNA and this corresponded to the route of infec-
tion, which was by the aerosol route. 

 Finally, the pan- Orthopoxvirus  PCR/ESI-MS platform was 
successful in discriminating MPXV and VACV viral DNAs 
that were spiked together in macaque blood. The three sam-
ples tested had similar (sample 1) and various concentrations 
(samples 2 and 3) of the two viruses spiked into them ( Table 4 ). 
MPXV was detected at a slightly higher concentration in terms 
of log 10  genome equivalents per milliliter, when equal concen-
trations of both viruses were spiked into the same sample, but 
VACV could still be clearly identified ( Figure 2 ). Therefore, 
the pan- Orthopoxvirus  PCR/ESI-MS assay has the capabil-
ity to identify VACV and MPXV from mixed blood samples, 
which are present at various concentrations ( Table 4 ). 

 Overall, this study strongly supports the application of 
the Ibis-T5000 Biosensor pan- Orthopoxvirus  assay for the 
quantitative detection of orthopoxviruses from experimen-
tally infected macaques, spiked human and macaque clinical 
samples, and potentially naturally infected human specimens. 
Furthermore, the PCR/ESI-MS platform has the capability to 
detect multiple orthopoxviruses from the same sample, thus 
being able to differentiate vaccine strains (i.e., VACV) from 
challenge virus (i.e., MPXV), which might be used concur-
rently during a trial testing for vaccine efficacy. 
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